Altered orbitofrontal tissue microstructure in patients with chronic anterior temporal lobe lesions

Abstract Submission No:
1936

Authors:
Soyoung Choi¹, Chitresh Bhushan¹, Anand Joshi¹, Kristen Raphel¹, Daniel Tranel², David Shattuck³, Justin Haldar¹, Richard M. Leahy¹, Hanna Damasio¹, Jessica Wisnowski¹,4

Institutions:
¹University of Southern California, Los Angeles, United States, ²University of Iowa, Iowa City, IA, ³University of California Los Angeles, Los Angeles, United States, ⁴University of Pittsburgh, Pittsburgh, PA

Introduction:
The anterior temporal lobe (ATL) is strongly interconnected with the frontal lobe, particularly the orbitofrontal cortex (OFC) and, to a lesser extent, the cingulate and lateral frontal cortex, via direct fiber pathways in the uncinate fasciculus and extreme capsule (Schmahmann & Pandya, 2006). Given this pattern of connectivity, an important unanswered question is: what secondary effect does an ATL lesion have on the microstructure-and ultimately, the underlying connectivity-of the frontal lobe? We hypothesized tissue microstructure would be altered of the OFC ipsilateral to chronic ATL lesions as evidenced by diffusion tensor imaging (DTI).

Methods:
12 adult subjects (all right-handed) with ATL lesions (n= 7, right; 5, left) due to surgical resection (n=9) or hemorrhage (3) underwent MRI (T1-weighted, DTI) scans as part of large-scale project on focal brain lesions (NIH NS019632). 3D-T1-weighted MRI scans (MPRAGE; 1mm isotropic voxels) were processed using BrainSuite (Shattuck & Leahy, 2002) to produce cortical surface meshes and tissue classification maps; this processing was performed in a semi-automated fashion, with limited manual correction of the cortical boundaries to minimize extraneous inclusion of meninges or cerebellum into the cerebral volumes. Lesion brain images were then segmented into 90 regions of interest (ROIs) by applying an automated algorithm, SVReg to the extracted brain meshes and corresponding MRI data (Joshi, Shattuck, & Leahy, 2012). SVReg uses two criteria (surface curvature and the 3D location of vertices in the cortical surface mesh) to align a standardized reference brain, which has been segmented into anatomical ROIs, to a target brain (here, the lesion subject). Although local curvature information is destroyed in the vicinity of a cortical lesion, the preservation of the curvature in the remaining tissue and the availability of cortical surface vertex locations adjacent to the damaged tissue stabilizes the alignment to the reference brain and therefore allows for segmentation of lesioned brains (Fig. 1).

DTI data (TE=86 ms; TR=11000 ms; FOV: 256x256 mm2; 2 mm isotropic voxels; 64 diffusion-encoding directions at b-value = 1000 s/mm2) were corrected for geometric distortion using a corresponding fieldmap and then aligned to T1-weighted images using rigid registration in accordance with previously published methods (Bhushan, Joshi, Haldar, & Leahy, 2012). The ROIs, further segmented into gray matter (GM) and white matter (WM), were then mapped to the DTI data. DTI metrics (FA, MD, axial [AD] and radial diffusivity [RD]) were computed voxelwise and mean values were computed for each ROI, separately for GM and WM. Paired t-tests (SPSS; IBM corporation) were used to compare DTI metrics obtained ipsilateral versus contralateral to the ATL lesion within 7 frontal ROIs selected a priori for this study (Fig. 2). Significance was thresholded at p < 0.05, uncorrected.
Fig. 1
a. Coronal cross-sectional view of the lesion in the left ATL.
b. Surface rendering of same subject after processing in BrainSuite.
c. Labeled ROIs displayed on surface above after coregistration of template brain with S/Reg. (Note: Cross-hairs indicate the location of the lesion)
Results:
MD, AD and RD values were significantly higher in the GM and the WM (MD and RD only) of the OFC ipsilateral to the ATL lesion relative to the homologous contralateral ROI. FA was lower in the same regions (Fig 3.) Diffusivity was also increased in the GM of the IFG and in the WM of the MFG, and FA was decreased in the WM of the IFG (Fig. 3).
Conclusions:
In a cohort of patients with circumscribed lesions involving the ATL, we observed microstructural differences in distal GM and WM regions of the ipsilateral frontal lobe relative to homologous regions in the contralateral hemisphere. Consistent with the known connectivity, these differences were most prominent in the OFC in comparison to other frontal regions. These results suggest that the microstructure or connectivity of the OFC has been altered as a result of an ATL lesion. Further research is needed to understand whether these secondary structural changes affect the function of the orbitofrontal cortex in patients with anterior temporal lesions.

Neuroanatomy:
Brain Networks